El término cuásar (en inglés, quasar) fue acuñado por el astrofísico estadounidense de origen chino, Hong-Yee Chiu, en 1964, en Physics Today, para describir estos objetos extraños.
Los Cuásares son objetos lejanos que emiten grandes cantidades de energía, con radiaciones similares a las de las estrellas. Los cuásares son centenares de miles de millones de veces más brillantes que las estrellas. Posiblemente, son agujeros negros que emiten intensa radiación cuando capturan estrellas o gas interestelar.
La luz que percibimos ocupa un rango muy estrecho en el espectro electromagnético y no todos los cuerpos cósmicos emiten la mayor parte de su radiación en forma de luz visible. Con el estudio de las ondas de radio, los radioastrónomos empezaron a localizar fuentes muy potentes de radio que no siempre correspondían a objeto visibles.
Identificación de cuásares
Se identificaron en la década de 1950. Más tarde se vió que mostraban un desplazamiento al rojo más grande que cualquier otro objeto conocido. La causa era el efecto Dopler, que mueve el espectro hacia el rojo cuando los objetos se alejan.
El primer Cuásar estudiado, 3C 273 está a 1.500 millones de años luz de la Tierra. A partir de 1980 se han identificado miles de cuásares. Algunos se alejan de nosotros a velocidades del 90% de la de la luz.
Se han descubierto cuásares a 12.000 millones de años luz de la Tierra. Ésta es, aproximadamente, la edad del Universo. A pesar de las enormes distancias, la energía que llega en algunos casos es muy grande. Como ejemplo, el s50014+81 es unas 60.000 veces más brillante que toda la Vía Láctea.
Lo más espectacular de los cuasares no es su lejanía, sino que puedan ser visibles. Un cuasar deber ser tan brillante como 1.000 galaxias juntas para que pueda aparecer como una débil estrella, si se encuentra a varios miles de millones de años luz.
Pero aún más sorprendente es el hecho de que esa enorme energía proviene de una región cuyo tamaño no excede un año luz (menos de una cienmilésima parte del tamaño de una galaxia normal). El brillo de los cuasares oscila con periodos de unos meses, por tanto, su tamaño debe ser menor que la distancia que recorre la luz en ese tiempo.
Pero aún más sorprendente es el hecho de que esa enorme energía proviene de una región cuyo tamaño no excede un año luz (menos de una cienmilésima parte del tamaño de una galaxia normal). El brillo de los cuasares oscila con periodos de unos meses, por tanto, su tamaño debe ser menor que la distancia que recorre la luz en ese tiempo.
Al principio, los astrónomos no veían ninguna relación entre los cuasares y las galaxias, pero la brecha entre estos dos tipos de objetos cósmicos se ha ido llenando poco a poco al descubrirse galaxias cuyos núcleos presentan semejanzas con los cuasares. Hoy en día, se piensa que los cuasares son los núcleos de galaxias muy jóvenes, y que la actividad en el núcleo de una galaxia disminuye con el tiempo, aunque no desaparece del todo.
Los cuásares visibles muestran un desplazamiento al rojo muy alto. El consenso científico dice que esto es un efecto de la expansión métrica del universo entre los cuásares y la Tierra. Combinando esto con la Ley de Hubble se sabe que los cuásares están muy distantes. Para ser observables a esas distancias, la energía de emisión de los quasares hace empequeñecer a casi todos los fenómenos astrofísicos conocidos en el universo, exceptuando comparativamente a eventos de duración breve como supernovas y brotes de rayos gamma. Los cuásares pueden fácilmente liberar energía a niveles iguales que la combinación de cientos de galaxias medianas. La luz producida sería equivalente a la de un billón de soles.
En telescopios ópticos, la mayoría de los cuásares aparecen como simples puntos de luz, aunque algunos parecen ser los centros de galaxias activas. La mayoría de los cuásares están demasiado lejos para ser vistos por telescopios pequeños, pero el 3C 273, con una magnitud aparente de 12,9 es una excepción. A una distancia de 2.440 millones de años luz, es uno de los objetos más lejanos que se pueden observar directamente con un equipo amateur.
Se ha descubierto que los quásares varían de luminosidad en escalas de tiempo diversas. Algunas varían su brillo cada algunos meses, semanas, días u horas. Esta evidencia ha permitido a los científicos teorizar que los cuásares generan y emiten su energía desde una región muy pequeña, puesto que cada parte del quásar debería estar en contacto con las otras en tal escala de tiempo para coordinar las variaciones de luminosidad. Como tal, un cuásar que varía en una escala de tiempo de algunas semanas no puede ser mayor que algunas semanas luz de ancho.
Los cuásares manifiestan muchas propiedades idénticas a las de las galaxias activas: la radiación no es térmica y se ha observado que algunas tienen jets y lóbulos como las radiogalaxias. Los cuásares pueden ser observados en muchas zonas del espectro electromagnético como radiofrecuencia, infrarrojos, luz visible, ultravioletas, rayos X e incluso rayos gamma. La mayoría de los cuásares son más brillantes en el marco de referencia de ultravioleta cercano, cerca de la línea Lyman-alfa de emisión del hidrógeno de 1.216 Å o (121,6 nm), pero debido a su corrimiento al rojo, ese punto de luminosidad se observa tan lejos como 9.000 Å (900 nm) en el infrarrojo cercano.
Los primeros cuásares fueron descubiertos con radiotelescopios a finales de los años 1950. Muchos fueron registrados como fuentes de radio que no tenía un objeto visible correspondiente.Utilizando telescopios pequeños y el telescopio Lovell como un interferómetro, los objetos mostraban que tenía un tamaño angular muy pequeño.
Cientos de estos objetos fueron registrados hacia 1960 y se publicó el Tercer Catálogo de Cambridge de Radio-fuentes (3C) mientras los astrónomos exploraban el cielo con telescopios ópticos. En 1960, la fuente de radio 3C 48 fue finalmente vinculada con un objeto óptico. Los astrónomos detectaron lo que parecía una estrella azul tenue en la posición de la fuente de radio y obtuvieron su espectro: conteniendo muchas líneas de emisión desconocidas, el espectro anómalo resistía una interpretación.
Los primeros cuásares fueron descubiertos con radiotelescopios a finales de los años 1950. Muchos fueron registrados como fuentes de radio que no tenía un objeto visible correspondiente.Utilizando telescopios pequeños y el telescopio Lovell como un interferómetro, los objetos mostraban que tenía un tamaño angular muy pequeño.
Cientos de estos objetos fueron registrados hacia 1960 y se publicó el Tercer Catálogo de Cambridge de Radio-fuentes (3C) mientras los astrónomos exploraban el cielo con telescopios ópticos. En 1960, la fuente de radio 3C 48 fue finalmente vinculada con un objeto óptico. Los astrónomos detectaron lo que parecía una estrella azul tenue en la posición de la fuente de radio y obtuvieron su espectro: conteniendo muchas líneas de emisión desconocidas, el espectro anómalo resistía una interpretación.
En 1962 se consiguió un avance destacado. Otra fuente de radio, la 3C 273, fue pronosticada para sufrir cinco ocultaciones por la Luna. La medidas obtenidas por Cyril Hazard y John Bolton durante una de las ocultaciones utilizando el Observatorio de Parkes permitió a Maarten Schmidt una identificación óptica del objeto y obtener su espectro visible con el telescopio Hale de Monte Palomar.
Este espectro reveló las mismas líneas de emisión extrañas. Schmidt se dio cuenta que se trataba de las líneas del espectro del hidrógeno con un corrimiento al rojo del 15,8 %. Este descubrimiento mostraba que la 3C 273 se estaba alejando a una velocidad de 47.000 km/s.5 Este descubrimiento revolucionó la observación de quásares y permitía a otros astrónomos buscar corrimientos al rojo en las líneas de emisión de otras fuentes de radio. La 3C 48 mostró tener un corrimiento al rojo del 37 % de la velocidad de la luz.
A finales de la década de 1980, se habían identificado varios miles de quásares y se había determinado el desplazamiento hacia el rojo de unos cientos de ellos. Si consideramos que el desplazamiento hacia el rojo está realmente provocado por el alejamiento de la galaxia, estos quásares se estarían alejando a una velocidad de más del 93% de la velocidad de la luz. De acuerdo con la ley de Hubble, su distancia sería, por tanto, de más de 10.000 millones de años luz y su luz habría estado viajando prácticamente durante toda la existencia del Universo. En 1991, investigadores del Observatorio Monte Palomar descubrieron un quásar a una distancia de 12.000 millones de años luz. Algunos quásares producen más energía que 2.000 galaxias. Uno de ellos, el S50014 + 81, puede ser 60.000 veces más brillante que nuestra Vía Láctea.
Este espectro reveló las mismas líneas de emisión extrañas. Schmidt se dio cuenta que se trataba de las líneas del espectro del hidrógeno con un corrimiento al rojo del 15,8 %. Este descubrimiento mostraba que la 3C 273 se estaba alejando a una velocidad de 47.000 km/s.5 Este descubrimiento revolucionó la observación de quásares y permitía a otros astrónomos buscar corrimientos al rojo en las líneas de emisión de otras fuentes de radio. La 3C 48 mostró tener un corrimiento al rojo del 37 % de la velocidad de la luz.
A finales de la década de 1980, se habían identificado varios miles de quásares y se había determinado el desplazamiento hacia el rojo de unos cientos de ellos. Si consideramos que el desplazamiento hacia el rojo está realmente provocado por el alejamiento de la galaxia, estos quásares se estarían alejando a una velocidad de más del 93% de la velocidad de la luz. De acuerdo con la ley de Hubble, su distancia sería, por tanto, de más de 10.000 millones de años luz y su luz habría estado viajando prácticamente durante toda la existencia del Universo. En 1991, investigadores del Observatorio Monte Palomar descubrieron un quásar a una distancia de 12.000 millones de años luz. Algunos quásares producen más energía que 2.000 galaxias. Uno de ellos, el S50014 + 81, puede ser 60.000 veces más brillante que nuestra Vía Láctea.
No hay comentarios:
Publicar un comentario